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ABSTRACT

This study describes keratan sulfate (KS), a multifunctional electroconductive glycosaminoglycan, and
it’s participation in electrochemical processes that regulate neuronal activity. Neuronal cells are highly re-
sponsive to electrical stimulation and this is an intrinsic evolutionary property of this cell type. Tissue engi-
neering protocols are being developed to produce scaffolds that provide electrical environments conducive
to neuronal activity to improve neural repair and regenerative responses. Incorporation of KS in bioactive
electroconductive hydrogels may enhance their therapeutic properties by improving their interactions
with growth factors, structural and neuroregulatory glycoproteins and through the proton capture elec-
troconductive properties of KS. Brain tissues are one of the richest sources of KS in the human body and it
has diverse properties including roles in synaptic stabilization and plasticity essential for optimal neuronal
activity. Electrical cues are important determinants of neurotransduction in neural networks and also regu-
late wound healing and neuro-regenerative processes. Novel bioelectronic neural therapeutics are being
harnessed to promote repair of the CNS/PNS. KS has unique functional properties in cellular bioregulation,
a greater understanding of these properties would be expected to improve the capability of biotherapeutic
neural repair biology.
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Abbreviations

BBB: Blood Brain Barrier; CNS: Central Nervous System; CS: Chondroitin Sulfate; DS: Dermatan Sulfate; DTHL: C-Ter-
minal Amino Acid Asp-Thr-His-Leu motif; EB: Ezrin Inding Domain; ECM: Extracellular Matrix; ERM: Ezrin/Radixin/
Moesin; FERM: F for protein 4.1, E for ezrin, R for radixin, and M for moesin; GAG: GAG; GPO: Glutathione Peroxi-
dase; GSH: Glutathione; GTP: Guanosine Triphosphate; HA:
fate; NHERF-1/2 Sodium Hydrogen Exchanger Regulatory Factor-1 /2; PNS: Peripheral Nervous System; PDZ: Post-

Hyaluronan; HS: Heparan Sulfate; KS: Keratan Sul-

synaptic Density Protein (PSD95), Drosophila Disc Large Tumor Suppressor (DIgA), and Zonula Occludens-1 protein
(Zo-1); PODXL: Podocalyxin; RhoA: Transforming Protein RhoA, Ras homolog; RhoGDI: Rho GDP-dissociation inhibitor

1; Robo: Roundabout receptor; SV2: Synaptic Vesicle Proteoglycan-2

INTRODUCTION
Keratan Sulfate (KS) is a Glycosaminoglycan (GAG)

that is composed of D-galactose-N-acetyl glucosamine
repeat disaccharides that are assembled into a sulfat-
ed poly-N-acetyl lactosamine chain which is sulfated
in specific regions along the KS chain (Funderburgh,
2002). KS occurs as three forms, KSI, corneal KS; KSII,
skeletal KS of cartilaginous tissues and KSIII which is
found in brain tissues (Caterson, 2018). KS is 0-6 sulfat-
ed in monosulfated and disulfated regions, the lactos-
amine region is non-sulfated. The monosulfated region
is sulfated on N-acetylglucosamine while D-galactose
and N-acetylglucosamine are both sulfated in the disul-
fated region. Each of these regions are of variable sizes
leading to significant size and charge heterogeneity in
KS chains in tissues which vary with tissue ageing and
spatial location. KS has diverse interactive properties
with growth factors, morphogens, and neuroregula-
tory proteins (Conrad, 2010; Weyers, 2013) and has pro-
ton capture electroconductive properties operative in
neuronal cell signaling in neurotransductive processes
(J. Melrose, 2024b, 2025a; J. Melrose, 2025; J. Melrose,
2025b) (Figure 1).

THE CHEMISTRY OF WATER AND EMER-
GENCE OF ELECTROCHEMICAL GRADIENTS
IN THE EVOLUTION OF LIFE ON EARTH

The chemistry of water was one of the most crucial
determinants that shaped the evolution of life on earth.
An important chemical feature of water is its dissocia-
tion into protons and hydroxyl ions to provide relative-
ly high proton concentrations in ambient solution. This
resulted in the appearance of proton pumps in the deep
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ocean environments during the dawn of life and main-
tained a neutral pH inside the early cells that evolved
(Lane, 2017). The generation of electrochemical proton
gradients across membranes termed the proton-mo-
tive force was essential for the survival of the earliest
unicellar organisms (Nelson, 1994). The emergence of
membrane bioenergetics equipped membranes with
ion transport properties essential to early cellular
evolution (Wilson, 1980) providing a nutrient trans-
port system for simple unicellular organisms (Daniel,
2006). With the evolution of the eukaryotes, the proton
motive force generated by mitochondria evolved as a
way to generate ATP (Mitchell, 1961). The evolution of
GAGs (Yamada, 2011) served as a means of capturing
and transporting protons in energy production and
provided a cell instructive platform to control cellular
behavior (Lafont, 1992). GAGs are the unsung heroes
of biomolecular signaling (Gulati, 2016). GAGs regulate
cell signaling interactions with growth factors and ECM
components, control cellular adhesion, proliferation
and differentiation and tissue development (Gandhi,
2008; Hayes AJ, 2018; Schwartz, 2023).

ELECTROCONDUCTIVE EVENTS IN TISSUES
REGULATE CELL BEHAVIOR AND TISSUE DE-
VELOPMENT

Sulfation patterns on GAGs are important functional
determinants which provide selectivity in interac-
tions with growth factors, receptors and structural
ECM proteins of importance in tissue development
and stabilization of mature tissues (J. Melrose, 2025a;
J. Melrose, 2025; Prydz, 2015). Sulfated GAGs regulate

axonal migration and guidance for correct intercon-
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KS cloud and proton shuffling

Figure 1: Cerebellar neuronal networks and signal carrying proton gradients. KS is a proton capture electroconductive GAG that may
find application in the development of neural signaling platforms like electroconductive hydrogels being developed for neural repair.

nectivity of neural networks through interactions with
neuroregulatory proteins such as Robo-Slit (Y. Chang,
Dubnau, J. , 2025; Conrad, 2010; Schwend, 2012). The
neuron is particularly sensitive to electrical stimula-
tion and this is a central feature of its functional prop-
erties in neurotransduction in neural networks (Jones,
2023). Electroconductive events are intrinsic to many
natural cellular phenomena (T. Decoursey, 2003; T.
DeCoursey, Cherny, VV., 2000) such as mitochondrial
oxidative phosphorylation and energy production fun-
damental to life processes (Madeira, 2018; Mitchell,
1966, 1972, 2011; Nath, 2015), uncoupling of membrane
potentials in membrane polarization and neuronal
potentiation(Schoen, 2008; Shin, 2010; Ye, 2015) and
the priming of cells undergoing cellular proliferation,
apoptotic processes or cellular migration (Hodeify,
2018; Love, 2018; Valero, 2008). Electrochemical reac-
tions are intrinsic to the control of cell and tissue po-
larity (Lafont, 1992; Viola, 2024) and regulation of cel-
lular behaviour (F. Chang, Minc, N. , 2014; Maiies, 2000;
Muthuswamy, 2012). All GAGs have electroconductive
potential but to variable degree (Josberger, 2016), KS
is the best electroconductive GAG and the most po-

tent proton capture compound so far detected in na-

ture (Selberg, 2019). The conduction of protons by KS
occurs through H-bonding interactions (J. Melrose,
2024b) (Figure 2). Cell surface GAGs produce localized
ion fluxes at the plasma membrane cell surface, and
electrochemical gradients that contribute to cell polar-
ization, migration, cellular division, proliferation and
differentiation.

KS HAS INSTRUCTIVE ROLES IN BRAIN DE-
VELOPMENT

KS has been proposed to form an instructive template
that facilitates migration of neuroblasts during brain
development and has been immunolocalised to radial
and tangential neuroblast migratory pathways from
subventricular zone to cortical plate as early as 9wk GA
(H. Sarnat, Yu, W., 2025). KS has also been prominently
immunolocalised in the cytoplasm of astrocytes and
extracellular parenchyma at 9wk in globus pallidus, at
15wk in the thalamus, at 18wk in the corpus striatum,
at 22wk in the cortical plate, and in the hippocampus
postnatally. KS has selective properties and repels glu-
tamatergic axons but facilitates GABAergic axonal mi-
gration at sites of synapse formation (H. Sarnat, Flores-

Sarnat, L. , 2024), consistent with proposed roles for
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KS as an instructive GAG (J. Melrose, 2025a; J. Melrose,
2025;]. Melrose, 2025b, 2025¢) and for KS-proteoglycans
in axonal guidance roles during brain development (H.
Sarnat, 2019; H. Sarnat, Yu, W, Flores-Sarnat, L. , 2021).

PROTONS, AN INTERCELLULAR MESSENGER
WITH NEUROTRANSMITTER ACTIVITY

Protons act like a neurotransmitter, activating post-
synaptic acid-sensing ion channels which act as proton
receptors (Du, 2014). This property facilitates synaptic
plasticity, and is an important requirement in cogni-
tive learning and memory (Zeng, 2012). Protons and
acid-sensing ion channels are both required for synap-
tic plasticity and neuronal signal transmission (Zeng,
2012). Protons in the absence of neurotransmitters can
stimulate muscle contraction in C.elegans (Beg, 2008)
acting as intercellular messengers with neurotransmit-
ter activity (J. Kim, Zhen, M., 2008). The transfer of pro-
tons by GAGs involves interactions with H bonds and
water molecules and was proposed by Grotthus in 1806
(de Grotthuss, 1806) and reviewed on his 200th anni-
versary by Cukierman (Cukierman, 2006). Proton trans-
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fer has been described as “proton-hopping” where
trains of protons tunnel across a series of hydrogen
bonds between hydronium ions and water molecules in
GAGs (Popov, 2023), this is termed Grotthuss shuttling
(Knight, 2012). This transfer process facilitates nerve
signal transmission (Kier, 2016). Proton shuttling also
occurs in synthetic electroconductive hydrogels being
developed in neural repair and regeneration strategies
(Z. Liu, Lai, J, Kong, D, Zhao, Y, Zhao, J, Dai, J, Zhang, M.
, 2024; Qin, 2023; Shahemi, 2023) suggesting that KS is
a candidate that should be considered in such proce-
dures. KS has the highest proton conductivity reported
of any biological material (Josberger, 2016) and is an
abundant GAG in the CNS/PNS (Caterson, 2018).

KS HAS ELECTROSENSORY PROPERTIES IN A
RANGE OF TISSUES

Cartilaginous fish species such as the elasmobranch
rays and sharks have gel-filled tubular sensory pits
that interface with their neural systems, these are dis-
tributed primarily around the skin of their snouts (M.
Phillips, Wheeler, AC, Robinson, MJ, Leppert, V, Jia, M,

Proton

-

Proton capture and transport

Figure 2: Schematic depiction of proton calpture and transport by the KS hydronium ion co-operative network cloud formed through
acilit

hydrogen bonding along the KS chain which

ates hopping or shuttling interactions with protons in the internal structure of this GAG.

This also involves interactions between hydronium ions and water molecules aided by the charge properties of the sulfate groups on KS.
The bound proton does not remain with a single water molecule but cycles rapidly between many water molecules many times per second
ensuring the proton remains entrapped in the KS hydrogen bonding cloud and aﬁo generates hydronium ions which are reactive species
that attract further protons which furthers electroconductive processes.
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Rolandi, M, Hirst, LS, Amemiya, CT. , 2021). These pits
filled with a KS electro-sensory gel have been termed
Ampullae of Lorenzini, this electrosensory gel allows
fish to undertake electroreception (Crampton, 2019; J.
Melrose, 2019a, 2025a; X. Zhang, Xia, K, Lin, L, Zhang, F,
Yu, Y, St Ange, K, Han, X, Edsinger, E, Sohn, J, Linhardt,
RJ., 2018) where they detect electric fields through the
proton conductivity properties of KS (Selberg, 2019; X.
Zhang, Xia, K, Lin, L, Zhang, F, Yu, Y, St Ange, K, Han, X,
Edsinger, E, Sohn, J, Linhardt, RJ. , 2018). Approximate-
ly 16% of fish species utilise electroreceptors to detect
microvolt-range bioelectric fields generated by prey
fish species. These electroreceptors can also be used for
electrocommunication (Crampton, 2019). Fluorescent
microscopy, small-angle Synchrotron X-ray scattering,
atomic force microscopy and scanning electron mi-
croscopy has shown this sensory gel is a viscous disper-
sion of aggregating spherical microparticles within an
aqueous medium (M. Phillips, Wheeler, AC, Robinson,
MJ, Leppert, V, Jia, M, Rolandi, M, Hirst, LS, Amemiya,
CT., 2021). These particles are resistant to proteinase
K digestion which decreased gel viscosity but did not
diminish proton conductivity which was increased by
protease treatment. Fluorescent microscopy with chi-
tin binding bioprobes has identified chitin as a compo-
nent of these microparticles (M. Phillips, Tang, W], Rob-
inson, M, OcampoDaza, D, Hassan, K, Leppert, V, Hirst,
LS, Amemiya, CT. , 2020) however the fine structure of
the KS glycoconjugate in these electroconductive gels
in fish awaits full clarification. Electroreceptors also
detect water movement in fish, using an ancient sub-
division of the lateral line sensory system which uses
sensory hair cells in ampullary organs to detect water
movement (Modrell, 2011; Solon, 2025). This is similar
to how the sensory system of the cochlea in humans de-
tect auditory signals through sound generated internal
water displacements in the cochlea detected by sensory
hair cells which interface with a neural system generat-
ing electrical signals that are transferred to the brain
via the 8th cranial nerve (Goutman, 2015). KS-proteo-
glycans are also present on the tectorial membrane and
sensory hair cells in the human cochlea (Thalmann,
1993) and these may have roles in auditory sensory

transfer processes (J. Melrose, 2024b). This has paral-
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lels with the sensory hairs of the lateral line neuromast

in fish which acts as a hydrodynamic sensory antenna
(Chaumel, 2025).

GAGS HAVE ROLES IN CELL POLARIZATION
AND TISSUE DEVELOPMENT

Cell polarization is a dynamic process equipping cells
with plastic properties during cytoskeletal alterations
in response to intrinsic and extrinsic ECM microme-
chanical instructive cues (F. Chang, Minc, N. , 2014; Mu-
thuswamy, 2012) facilitating changes in cell shape dur-
ing cell division, migration and tissue morphogenesis
(Mafies, 2000). These cellular changes facilitate tissue
development and ECM remodeling during tissue repair
where cellular phenotypes and cellular behavior un-
dergo alterations in structure and function. Mechani-
cal directive environmental and electrochemical cues
determine migratory, proliferative, and differentiative
cellular responses (F. Chang, Minc, N., 2014). Cell migra-
tion is guided by ECM components such as cell adhesive
receptors and structural proteins conveying microme-
chanical cues that modify the cytoskeleton and alter
cell shape. Axonal guidance cues are provided by the
GAG side chains of a number of neural proteoglycans,
CS-proteoglycans deliver inhibitory cues during neu-
ritogenesis while HS-proteoglycans convey stimula-
tory effects promoting neural dendritic outgrowth (Ali,
2025; Maeda, 2015; J. Melrose, Hayes, A], Bix, G. , 2021;
Schwartz, 2023; Yu, 2017). KS also regulates neurito-
genesis through interactions with ECM neural guidance
molecules such as Robo-Slit (Conrad, 2010; Schwend,
2012) ensuring correct assembly of functional neural
networks (A. Hayes, Melrose, J. , 2021; Hayes AJ, 2018; J.
Melrose, 2024a; Mitsunaga, Mikami, Mizumoto, Fukuda,
& Sugahara, 2006; Saied-Santiago, 2018).

ELECTROCHEMICAL EVENTS IN BRAIN DE-
VELOPMENT

Neuron sensitivity to electrical stimulation from elec-
trochemical environments directs brain development
where the vast majority of neurons become polarized
(Sakakibara, 2015b; T. Takano, Funahashi, Y, Kaibuchi,
K., 2019) making them responsive to the instructive
ECM of niche environments through varied arrange-
ments of HA and proteoglycans (J. Melrose, 2019a,
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2019b, 2023, 2024a; J. Melrose, Hayes, AJ, Bix, G. , 2021).
Neurons undergo extensive migration from neuropro-
genitor sub-ventricular regions of the lateral ventricle
and the subgranular zone of the hippocampal dentate
gyrus which are known centres of neuroprogenitor
cell production, to reach their final locations in the
mature brain (Corbin, 2008). The internal connectivity
of the CA3 (Cornu Ammonis region 3) subfield is more
extensive than in other hippocampal regions and has
been proposed to act as a “pacemaker” with directive
properties that instruct the neuronal migration in the
CA1 and CA2 regions (Cherubini, 2015; Jonas, 2014; Le
Duigou, 2014). Phosphacan substituted with KS and
splice variants of the transmembrane receptor protein
tyrosine phosphatase B/ also have instructive guidance
roles in the organization of mossy fibres in the hippo-
campus (Butler, 2004). The migrating neurons develop
ion channels which allow them to respond to their ECM
microenvironment during development (Isacoff, 2013;
Smith, 2020) and adapt to their new microenvironments
and can also modify local cellular niches through cell-
cell interaction, release of secreted neuroregulatory
factors and manipulation of ionic micro-environments
affecting local electrical activity (Gu, 2023; Namba,
2015; Sakakibara, 2015a, 2015b; Schelski, 2017; Tahi-
rovic, 2009; T. Takano, Funahashi, Y, Kaibuchi, K. , 2019;
T. Takano, Xu, C, Funahashi, Y, Namba, T, Kaibuchi, K.,
2015; Yoshimura, 2006). Migrating neurons are thus in-
terconnected with the electrical properties of the cel-
lular micro-environment they encounter(Medvedeva,
2020) and become uniquely interconnected with the
ECM and resident neuronal cellular populations (Frit-
zsch, 2019). Recent progress in live cell imaging exam-
ines how neurons differentiate during development
revealing the initial steps of formation of ion channels
and cell polarization, where neurons establish an axon
and shows how excitatory and inhibitory cortical neu-
rons establish neuronal polarity (Sakakibara, 2015b). A
developmentally regulated KS-proteoglycan has been
shown to modulate neuronal cell adhesion during em-
bryonic brain development (Cole, 1991). KS-proteogly-
cans modulate recovery of spinal cord injuries (Hilton,
2012; Imagama, 2011).

KS-PROTEOGLYCANS EQUIP NEURONAL TIS-
SUES WITH FUNCTIONAL PROPERTIES
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KS is a multifunctional GAG (J. Melrose, 2019a, 2025a; ].
Melrose, 2025; J. Melrose, 2025b) that equips a range of
KS proteoglycans with important functional properties
in the CNS/PNS functionalizing neuronal and astrocyte
niche microenvironments optimizing cellular activ-
ity by preserving membrane polarization dynamics,
ionic microenvironments, ion fluxes, neuronal activa-
tion, and network neurotransductive capacity (J. Mel-
rose, 2024a). KS-proteoglycans have diverse interactive
properties with growth factors, morphogens and neu-
roregulatory proteins of importance in neuronal regu-
lation in tissue development and homeostasis in health
and also in pathological processes in disease (J. Melrose,
2019b).

PODOCALYXIN IS AN IMPORTANT NEURO-
REGULATORY KS PROTEOGLYCAN

Neural development and synaptic plasticity are regu-
lated by podocalyxin, a sialylated transmembrane KS-
proteoglycan (N. e. a. Vitureira, 2010). Podocalyxin
contains mucin-like core protein modules which are
substituted with sialic acid, KS and N- and O-linked
oligosaccharides (Figure 3). The transmembrane and
phosphorylated cytoplasmic domains of podocalyxin
have roles in cell signaling through interactions with
ezrin and NHERF-1/2 (Sodium Hydrogen Exchanger
Regulatory Factor-1 /2) cytoskeletal proteins. Podoca-
lyxin’s C-terminal amino acid Asp-Thr-His-Leu (DTHL)
motif is required for recruitment of NHERF-1. The
DTHL motif of podocalyxin interacts with the N-termi-
nal FERM (F for protein 4.1, E for ezrin, R for radixin,
and M for moesin) domain of ezrin. The FERM domain
is a widespread 30 kDa protein module which aids in
the localisation of cytoskeletal proteins to the plasma
membrane. Ezrin interacts with podocalyxin via the C-
terminal NHERF-1/2 motif following binding of DTHL
to the PDZ2 domain of NHERF-1/2. The PDZ domain is
a 80-90 amino acid module in multi domain scaffold-
ing proteins with roles in cell signaling. PDZ stands for
Postsynaptic density protein (PSD95), Drosophila disc
large tumor suppressor (DIgA), and Zonula occludens-1
protein (zo-1). PDZ proteins are key organizers that
control synaptic protein assembly and structural or-
ganization (E. Kim, Sheng, M. , 2004). Formation of
PODXL-NHERF-1/2-ezrin complex promotes binding to
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the actin cytoskeleton. Sequestration of RhoGDI (Rho
GDP-dissociation inhibitor 1) a regulator of the Rho
family GTPases (Dovas, 2005) by ezrin releases Rho-
GDP, which upon its conversion to Rho-GTP enhances
the activation of Rho-family GTPases which have axo-
nal guidance, cell signaling roles and provide synaptic
plasticity (Spillane, 2014). RhoA (Transforming protein
RhoA, Ras homolog) promotes neuronal development
(Govek, 2005) and assists in the functional recovery of
spinal cord injury through promotion of synaptogen-
esis by Robo1l. Roundabout (Robo) receptors expressed
by various cell types in the CNS, mediate intracellular
signal transduction pathways for Slit 2 (Li, 2017; San-

hueza, 2025). Slit 2 is a key regulator of axon regenera-

@2025 Melrose J, et al.

tion and synapse formation and has been suggested as
a therapeutic target in CNS disorders (Sherchan, 2020).
Podocalyxin is an anti-adhesive transmembrane sialo-
KS-proteoglycan with essential roles to play in neural
development (N. Vitureira et al., 2010; N. Vitureira,
McNagny, Soriano, & Burgaya, 2005) in health and
ECM remodeling in disease (J. Nielsen, McNagny, KM.
, 2009). Podocalyxin regulates neuronal migration and
provides axonal guidance cues during development of
the CNS. Podocalyxin has important functional prop-
erties in the CNS during neurotransductive processes,
it co-localises with synapsin and synaptophysin in
synaptic vesicles and preserves synaptic plasticity (N.
Vitureira et al., 2010). The latter protein co-ordinates
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and the activation of Rho-family GTPase cell signaling proteins. Abbreviations: DTHL, Asp-Thr-His-Leu motif; ERM, Ezrin/
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the transport of synaptic vesicles to the synaptic gap
during neural activation (Kwon & Chapman, 2011) , co-
operating with another KS-proteoglycan, SV2, which is
a synaptic vesicle neurotransmitter transporter pro-
teoglycan (Bajjalieh 1992; Carlson, 1996; Nowack, 2010;
Scranton, 1993; Wan, 2010). Synapsin tethers synaptic
vesicles to cytoskeletal components preventing their
premature release into the synaptic gap during neu-
ral activation (Bykhovskaia, 2011; Cesca, Baldelli, Val-
torta, & Benfenati, 2010; Fornasiero, Bonanomi, Benf-
enati, & Valtorta, 2010; S. H. Song & Augustine, 2015).
SV2 proteoglycan (Carlson, 1996; Scranton, 1993; Son,
2000; Wan, 2010) has roles in the storage and transport
of neurotransmitters carried in neuronal synaptic ves-
icles which upon neural activation are transported in a
co-ordinated manner to the synaptic gap where these
vesicles fuse with the pre-synaptic membrane releas-
ing vesicular neurotransmitters into the synaptic gap
(J. Melrose, 2024b, 2025a; J. Melrose, 2025). These are
then taken up by neurotransmitter receptors on the
post-synaptic membrane of communicating neurons in
the neurotransductive network.

ROLES FOR KS IN THE TUMOUR ENVIRON-
MENT

High and low charge density forms of KS are expressed
in the tumor environment (A. Hayes, Melrose, J. , 2020;
J. Melrose, 2025b). Lung metastatic tumors show a high-
er-level expression of highly charged KS compared to
primary tumors. Aberrant expression of KS is predic-
tive of pancreatic cancer progression and metastasis
and suggested as a novel prognostic biomarker for sev-
eral cancers (Leiphrakpam, 2019;]. S. Nielsen & McNag-
ny, 2009; Wang et al., 2017). KS is also associated with
astrocytic tumors in glioma (Kato, 2008) and with their
malignant status (N. Hayatsu, Kaneko, MK, Mishima, K,
Nishikawa, R, Matsutani, M, Price, JE, Kato, Y. , 2008).
Podocalyxin decorated with low-sulfation KS is prefer-
entially expressed in human testicular endothelial cells
(A. Muramoto, Hoshino, H, Inamura, S, Murahashi, M,
Akama, TO, Terada, N, Kobayashi ,M. , 2024; A. Mura-
moto, Inamura, S, Hoshino, H, Terada, N, Kobayashi, M.
, 2023) and in non mucinous ovarian cancer (Hoshino,
2024). KS contributes to the development of malignant
phenotypes and the invasiveness of melanoma cells

(Tachibana, 2022). Podocalyxin is produced by human
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embryonic neuroprogenitor and induced pluripotent
stem cells (Toyoda, Nagai, Kojima, & Kinoshita-Toyoda,
2017) and is also upregulated in glioblastoma and in
astrocytomas (Binder, 2013; N. Hayatsu, Kaneko, MK,
Mishima, K, Nishikawa, R, Matsutani, M, Price, JE, Kato,
Y., 2008; N. Hayatsu, Ogasawara, S., Kaneko, M. K., Kato,
Y. & Narimatsu, H. , 2008; He, 2010; Kato, 2008; B. Liu,
Liu, Y, Jiang, Y., 2015; Y. Liu, Yang, L, Liu, B, Jiang, YG.
,2014).

How proteoglycans substituted with these KS isoforms
precisely promote tumor cell development has yet to
be fully elucidated but the diverse interactivity of KS
with a wide range of growth factors and morphogens
likely contributes to these processes (Conrad, 2010)
however other KS-proteoglycans such as lumican has
MMP inhibitory and anti-angiogenic properties that in-
hibit tumor development (Niewiarowska, 2011; D. Niki-
tovic, Berdiaki, A, Zafiropoulos, A, Katonis, P, Tsatsakis,
A, Karamanos, N, Tzanakakis, G. , 2007; D. Nikitovic,
Chalkiadaki, G, Berdiaki, A, Aggelidakis, J, Katonis, P,
Karamanos, NK, Tzanakakis, GN. , 2011; Pietraszek,
2014). The role of KS in tumor development is thus

complex.

ESSENTIAL PROTECTIVE ROLES FOR PODOC-
ALYXIN IN THE FILTRATIVE PROPERTIES OF
THE BLOOD BRAIN BARRIER AND KIDNEY
GLOMERULUS

Besides its roles in neuronal mediated assembly pro-
cesses, neuroregulatory cell signaling and preservation
of synaptic plasticity already described, podocalyxin
also has important roles in the maintenance of blood-
brain barrier integrity during acute inflammation (Cait,
2019). Podocalyxin promotes formation of tight junc-
tions during endothelial cell morphogenesis forming
functional barriers in blood vessels in the blood brain
barrier (BBB). Endothelial podocalyxin expression
is required for F-actin accumulation, association of
B-catenin with cell junctions, and efficient formation
of focal adhesion complexes essential for BBB integrity.
Podcalyxcin also has essential roles in the development
and function of the kidney glomerular filtration bar-
rier. Ablation of podocalyxin in kidney tissues clearly
shows a loss of filtrative properties compared to nor-

mal kidney tissues (Horrillo, 2016).
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APPLICATION OF GAGS IN TISSUE ENGI-
NEERING FOR TISSUE REPAIR

GAGs are an interesting class of functional biomol-
ecules that modulate tissue repair processes (J. Mel-
rose, 2016; Yang, 2024) through their charged sulfate
and carboxyl groups which under physiological condi-
tions are ionisable and can participate in interactions
with cells to direct cellular behavior (Hayes AJ, 2018; J.
Melrose, 2025; J. Melrose, 2025c; J. Melrose, Hayes, AJ,
Bix, G., 2021) and can influence tissue development
through their ability to regulate tissue morphogenesis
(A. Hayes, Sugahara, K, Farrugia, B, Whitelock, JM, Ca-
terson, B, Melrose, J. , 2018). Biomimetic proteoglycans
have been developed to repair the degenerate interver-
tebral disc in an attempt to promote tissue regeneration
(Chopra, 2024).The therapeutic application of sulfated
GAGs in tissue engineering applications demonstrates
the cell directive capabilities of these molecules (Far-
rugia, 2018; Karumbaiah, 2015; Menezes, 2023; Sodhi,
2020; Uygun, 2009). GAGs incorporated into tissue en-
gineering scaffolds and hydrogels can be used to direct
stem cell differentiation to select for a specific cell lin-
eage with tissue repair properties(Farrugia, 2018). In
addition to enhancing neurite outgrowth, these GAG
hydrogels recreate electrochemical environments that
promote repair or regeneration of neural tissues, sup-
porting endogenous cell signaling by delivery of exog-
enous electrical stimulation and neurotrophic factors.
Schwann cells play a dominant role in nerve regen-
eration and development following peripheral injuries
(Chitose, 2017; Ding, 2010; Li 2021; McMorrow, 2022;
Pan, 2020). Neural injury and associated neurological
diseases affect almost 1 billion people around the world
so there is a clear need to develop effective methods
that stimulate neural repair and regeneration (Evans,
2024; Gonsalves, 2024).

GAG-functionalized scaffolds are effective in modulat-
ing Schwann cell behavior (Idini, 2019) and can stimu-
late secretion of neutrophins such as brain-derived
neurotrophic factor, neurotrophin 3 and nerve growth
factor that aid in nerve repair (Taylor, 2004). These
modulate the proliferation, differentiation, migration,
or myelination of Schwann cells resulting in accelerated
repair and regeneration of nerves and improved recov-
ery of motor and sensory function in tissues (Alhamdi,
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2025). An electroconductive self-healing hydrogel has

been developed that stimulates the expression of genes
and proteins that promote Schwann cell myelination
by activating the interleukin 17 (IL-17) signaling path-
way (Xuan, 2023). This hydrogel has been injected di-
rectly into rat sciatic nerve-crush injury sites and was
highly effective in the promotion of nerve regeneration
and functional recovery of neural activity (Xuan, 2023).

All cells are responsive to electrical stimulation to
some degree and this can also be incorporated into tis-
sue repair strategies (Dai, 2021; A. Hayes, Melrose, J.,
2020; Hoare, 2016). Neural cells are highly responsive
to electrical stimulation, development of electrochemi-
cal hydrogels in tissue engineering of neural tissues has
shown that these stimulate neural outgrowth aiding in
the repair or regeneration of neural tissues (Xu, 2018).

The positive stimulatory response elicited by elec-
trical potentials on bone cells in repair processes is a
particularly well known example of such electrical
phenomena in action. Bone tissue consists of apatite
crystals embedded in an organic matrix, which upon
compression exhibits piezoelectric properties [Greek
piezein, “to squeeze or press”, and piezo, which means
“push”]. Like many other multicrystalline structures,
upon mechanical loading this generates an electrical
potential which acts as a driving force stimulating bone
cell metabolic activity, bone remodeling and repair
processes (Fukada, 1957; Marino, 1970; Shamos, 1963).
Electrical signals represent an essential form of cellular
communication and for decades electrical stimulation
has been used effectively in clinical practice to enhance
bone healing (Baek, 2022; Guillot-Ferriols, 2022).

THE POTENTIAL OF KS TO IMPROVE THE
PROPERTIES OF ELECTROCONDUCTIVE HY-
DROGEL COMPOSITES FOR REPAIR OF NEU-
RONAL TISSUES

Cells communicate with each other, and with their
surrounding ECM using metabolically driven electro-
chemical signals (Koo, 2023). Cell-ECM communication
provides guidance cues to neurons during the develop-
ment of neural networks (J. Melrose, Hayes, AJ, Bix, G. ,
2021). These signals are generated by ions passing back
and forth through cell membranes and these play a key
role in the regulation of cellular functions during tissue
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development, ECM remodeling during healing re-
sponses, and in tissue regeneration. CNS/PNS pro-
teoglycans have important electronic roles in tissue
development and homeostasis (J. Melrose, 2024a). KS-
proteoglycans have particularly important roles to play
in such processes (J. Melrose, 2025a). The KS component
of these proteoglycans conveys cell regulatory activity
and synaptic neuronal control of cellular interactions
and synaptic plasticity (J. Melrose, 2024b; J. Melrose,
2025).

Mesenchymal stem cells have long been known to
have tissue reparative and regenerative potential (Bar-
ry, 2004; Caplan, 2007). Stem cells are also responsive
to electrical stimulation (Heng, 2020) and this has been
investigated as a means of guiding these to a neuronal
phenotype appropriate for the repair or regeneration
of neuronal tissues (Eftekhari, 2023; Esmaeili, 2022).
Electrical stimulation within a conductive scaffold pro-
motes the differentiation of stem cells toward a neu-
ronal phenotype leading to improved stem cell-based
regenerative therapies and functional recovery of pe-
ripheral nerves (S. Song, McConnell, KW, Amores, D,
Levinson, A, Vogel, H, Quarta, M, Rando, TA, George,
PM. , 2021). Electrical stimulation has also been used
therapeutically to directly stimulate tissues (A. Hayes,
Melrose, J., 2020) and the central nervous system to
promote repair responses (Benabid, 2005).

The development of high-resolution neuroprosthetics
has led to the development of electroconductive poly-
mer hydrogel composites for therapeutic electrostimu-
lation of target cells (Mario Cheong, 2014). However,
these composites are largely composed of synthetic
polymers that have limited biorecognition properties
for ECM and cellular components limiting their bio-
integration in repair tissues and thus repair capability
to some degree. Incorporation of bioactive cell-recog-
nition molecules in electroconductive hydrogels has
been proposed as a means of improving these biomatri-
ces. KS may be useful in the enhancement of the repair
properties of such synthetic electroconductive hydro-
gels by providing better biorecognition properties. KS
is a highly interactive GAG with ECM components and
bioactive growth factors and neuroregulatory proteins

and through these it also has cell instructive proper-
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ties (J. Melrose, 2019b, 2024b; J. Melrose, 2025). Variably
sulfated regions in KS define its interactive properties
with ligands such as growth factors, morphogens and
cytokines which determine the instructive proper-
ties conveyed by KS-proteoglycans (J. Melrose, 2019a,
2025a).

CONCLUSIONS

KS is a multifunctional cell instructive electrocon-
ductive GAG which can participate in electrochemical
stimulation of cells and has directive roles not only in
tissue development but also in ECM remodeling in tis-
sue repair responses. KS is abundant in brain tissues
and has important roles in the electrochemical regula-
tion of neuronal activity in neurotransductive events
that regulate tissue functional properties. Bioelectric-
ity is a universal signaling cue in living organisms (G.
Zhang, Levin, M. , 2025) and has roles in wound heal-
ing and regenerative processes (Tyler, 2017) and may
be useful in bioelectronic therapeutics in health care
(Garg, 2025). A greater understanding of how KS acts
as the “vital-spark” in bioelectric cell regulatory phe-
nomena may be insightful into how strategies in tissue

repair may be improved.
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